Коллектор в машине: что это?
Назначение впускного коллектора в авто
Каждый автомобиль дышит, и вы не ослышались – это действительно так. Он вдыхает воздух и выделяет выхлопные газы. Кислород является одним из самых важных веществ, поддерживающий жизнь в вашем автомобиле.
В автомобилях с двигателем внутреннего сгорания, включая электрические автомобили, которые начинают выходить сегодня на рынок, происходит движение воздуха, представляющее собой серию небольших взрывов внутри камеры сгорания. Топливом для этих взрывов, как правило, является бензин, но взрывы не были бы возможны без кислорода. Другими словами, присутствие надлежащего количества воздуха и топливной смеси в цилиндрах вашего автомобиля необходимый фактор. Если двигатель – это сердце автомобиля, то впускной коллектор выступает в качестве его легких.
Впускной коллектор является частью автомобильного двигателя, которая подает топливо и воздух в цилиндры. Двигатель играет очень важную роль во всей эксплуатации транспортного средства. Эта часть автомобиля производит и поставляет энергию, необходимую для функционирования других компонентов автомобиля. Ряд других частей помогают двигателю распределять его мощность, среди которых числится и впускной коллектор.
Как работает впускной коллектор
Впускной коллектор является одним из составляющих элементов впускной системы транспортного средства. Главной функцией впускного коллектора является равномерное распределение горючей смеси (или просто воздуха в двигатель с непосредственным впрыском) к каждому впускному отверстию в головке цилиндра или цилиндров. Равномерное распределение играет важную роль в эффективности и производительности двигателя. Впускной коллектор также может служить креплением для карбюратора, дроссельной заслонки, форсунки и других составляющих двигателя транспортного средства. Впускной коллектор автонесет ответственность за направление воздушного потока в головку блока цилиндров. Разряжение, которое возникает во впускном коллекторе, применяется для функционирования вакуумного усилителя тормозов, а также для привода впускных заслонок.
Впускной коллектор представляет собой ряд труб, которые распределяют воздух, поступающий в двигатель равномерно в каждый из цилиндров, так что нужное количество воздуха смешивается с нужным количеством топлива. Большинство двигателей внутреннего сгорания работает на четырехтактном процессе и во время первого удара (так называемый такт впуска) воздух от впускного коллектора засасывается в каждый цилиндр через клапан или клапаны. Эти впускные клапаны закрываются для других трех ударов (сжатие, сгорание и выпуск) и снова открываются, когда цикл вновь начинается. Впускной коллектор отвечает за то, чтобы достаточное количество воздуха было доступно, когда клапан открывается для каждого такта впуска и чтобы каждый цилиндр получал то же количество воздуха, как и другие.
Дроссельная заслонка управляет количеством воздуха. В двигателе, который оснащен системой впрыска топлива, топливовоздушная смесь проходит по короткой части впускного коллектора, а в карбюраторном двигателе – через весь коллектор. Вышеперечисленные особенности свидетельствуют о том, что впускные коллекторы имеют различные конструкции.
Впускной коллектор крепится специальными болтами.
Виды впускных коллекторов
Есть стоковые и не стоковые коллекторы. Стоковые коллекторы делятся на горизонтальные и вертикальные. Основные типы горизонтальных коллекторов – это тип D16Z6 и D16Y8. Каждый коллектор имеет свои версии и разновидности. Не стоковые впускные коллектора используются для разных двигателей. Впускные коллекторы марок Skunk2 и EdelBrock устанавливаются горизонтально и повышают характеристику двигателя.
Вертикальный впускной коллектор устанавливается на экономичных двигателях, D16W7 VTEC-E, с менее агрессивным характером.
Дизайн и ориентация во впускном коллекторе являются основными факторами в объемной эффективности работы автомобильного мотора. Резкие изменения контура провоцируют перепады давления, в результате чего в камеру сгорания поступает меньше воздуха и топлива. Высокопроизводительные блоки имеют гладкие контуры и постепенные переходы между соседними сегментами.
Впускной коллектор изготавливается из алюминия или литейного чугуна, хотя в наши дни все большую популярность приобретают композитные пластиковые материалы.
Для чего в машинах постоянного тока используется коллектор?
Коллектор — это система медных пластин, изолированных друг от друга и от вала якоря. К пластинам припаяны отводы от обмотки якоря. Для соединения коллектора с зажимами машины и внешней цепью служат скользящие контакты (щетки).
Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).
Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины .
Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса. На рис. 1. показан общий вид коллектора электрической машины .
Для рассмотрения работы коллектора обратимся к рис. 2, на котором рамка с проводниками А и В показана в разрезе. Для большей наглядности проводник А показан толстым кружком, а проводник В двумя тонкими кружками.
Щетки замкнуты на внешнее сопротивление тогда э. д. с., индуктируемая в проводниках, будет вызывать в замкнутой цепи электрический ток. Поэтому при рассмотрении работы коллектора можно говорить не об индуктированной э. д. с., а об индуктированном электрическом токе.
Рис. 1. Коллектор электрической машины
Рис. 2. Упрощенное изображения коллектора
Рис. 3. Выпрямление переменного тока с помощью коллектора
Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.
Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.
Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.
Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось .
В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.
В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.
Рис. 4. Коллектор двигателя постоянного тока
Представление о характере изменения тока во внешней цепи за один оборот рамки, снабженной коллектором, дает кривая рис. 5. Из кривой видно, что наибольших значений ток достигает в точках, соответствующих 90° и 270°, т. е. когда проводники пересекают силовые линии непосредственно под полюсами. В точках 0° (360°) и 180° ток во внешней цепи равен нулю, так как проводники, проходя нейтральную линию, силовых линий не пересекают.
Рис. 5. Кривая изменения тока во внешней цепи за один оборот рамки после выпрямления коллектором
Из кривой нетрудно заключить, что хотя направление тока во внешней цепи и остается неизменным, но величина его все время меняется в пределах от нуля до максимума.
Электрический ток, постоянный по направлению, но переменный по величине, носит название пульсирующего тока. Для практических целей пульсирующий ток очень неудобен. Поэтому в генераторах стремятся сгладить пульсации и сделать ток более ровным.
В отличие от генераторов, в двигателях постоянного тока коллектор выполняет роль автоматического переключателя направления тока во вращающихся проводниках якоря. Если в генераторе коллектор служит для выпрямления переменного тока в постоянный, то в электродвигателе роль коллектора сводится к распределению тока в обмотках якоря таким образом, чтобы в течение всего времени работы электродвигателя в проводниках, находящихся в данный момент под северным полюсом, ток проходил постоянно в каком-либо одном направлении, а в проводниках, находящихся под южным полюсом, – в противоположном направлении.
Впускной коллектор
Впускной коллектор – важнейшая часть системы впуска двигателя внутреннего сгорания. Во впускном коллекторе поток воздуха смешивается с бензином, образуя топливо-воздушную смесь, и распределяется по цилиндрам.
Зачем нужен впускной коллектор
Основная функция впускного коллектора в равномерном распределении топливо-воздушной смеси (или просто воздуха в двигателях с непосредственным впрыском) по цилиндрам. Равномерное распределение необходимо для оптимизации производительности двигателя. Впускной коллектор также служит местом крепления для карбюратора или инжекторной топливной аппаратуры, дроссельной заслонки и других компонентов двигателя .
Появление впускных коллекторов с переменной геометрией позволило реализовать систему отключения части цилиндров на двигателях V8 и V10
В связи с нисходящим движением поршней во впускном коллекторе образуется частичное разрежение (ниже атмосферного давления). Разработчики двигателей научились использовать вакуум в качестве источника приводной силы для вспомогательных систем: вакуумного усилителя тормозов, устройства контроля за вредными выбросами, круиз-контроля, устройства коррекции угла опережение зажигания, стеклоочистителей, системы вентиляции картера и так далее, в зависимости от марки автомобиля.
Конструкция и материалы для производства впускных коллекторов
Конструктивно впускной коллектор представляет собой закрытый резервуар сложной формы с общей камерой (ресивером) и отводящими патрубками (по числу цилиндров двигателя). В течение долгого времени на двигатели устанавливали коллекторы из алюминия или чугуна, но примерно с начала 2000-х годов приобретают все большую популярность композитные материалы. Из пластика сделан коллектор двигателей Ford Zetec 2.0, Duratec 2.0 и 2.3 и многих других современных агрегатов.
Принцип действия и особенности формирования потока горючей смеси
Карбюратор или топливные форсунки распыляют топливо в приемную камеру коллекторе. За счет электростатических сил капли топлива немедленно разлетаются по камере и стремятся осесть на стенках коллектора или собраться в более крупные капли в воздухе. Оба действия нежелательны, поскольку приводят к образованию смеси неравномерной плотности. Чем лучше распыляется топливо, тем интенсивнее и полнее оно в дальнейшем сгорает в цилиндрах. Для достижения нужной турбулентности и давления в коллекторе, а следовательно, корректного распыления топлива, внутренние поверхности впускных каналов коллектора и головки блока цилиндров принято оставлять нешлифованными. Поверхность не должна быть слишком грубой, так как может возникнуть излишняя турбулентность, которая приведет к повышению давления и падению мощности двигателя.
Равнодлинный впускной коллектор, разработанный для гоночных автомобилей, стал стандартным атрибутом для двигателя современного легкового автомобиля
Впускной коллектор должен иметь строго определенную длину, емкость и форму. Все эти параметры рассчитываются при разработке силового агрегата. Впускной коллектор заканчивается воздушными каналами, которые направляют потоки воздуха к впускным клапанам мотора. В дизельных двигателях и системах с прямым впрыском, воздушный поток завихряется и направляется в цилиндр, в котором и происходит смешивание с топливом.
Значение длины и формы патрубков приемного коллектора
В последнее время длине и форме патрубков или каналов впускного коллектора придается огромное значение. В конструкции канала недопустимы резкие искривления и острые углы, так как в этих местах топливо, смешанное с воздухом, будет неизбежно оседать на стенках. В современных коллекторах используется принцип, родившийся в недрах мастерских по подготовке спортивных автомобилей – все индивидуальные каналы всех цилиндров, вне зависимости от удаленности от центра, имеют равную длину.
Такая конструкция способствует борьбе с так называемым “резонансом Гельмгольца”. Поток топливо-воздушной смеси в момент открытия впускного клапана движется по каналу коллектора в сторону цилиндра со значительной скоростью. Когда клапан закрывается, воздух, не успевший пройти в камеру сгорания, продолжает давить на закрытый клапан, создавая область высокого давления. Под его воздействием воздух стремится вернуться назад, в верхнюю часть коллектора. Таким образом, в канале образуется противоток, который прекращается в момент, когда клапан открывается в следующий раз. Процесс смены направления потока в традиционных коллекторах происходит постоянно и на скорости, близкой к сверхзвуковой. Дело в том, что помимо открытия и закрытия клапанов, воздух стремится к постоянной смене направления в соответствии с явлением резонанса, который открыл Герман фон Гельмгольц, автор классических работ по акустике. Естественно, когда воздух непрерывно “болтается туда-сюда” неизбежны потери мощности. Впервые коллекторы, оптимизированные по резонансу Гельмгольца были применены в двигателях Chrysler V10, которыми комплектовались автомобили Dodge Viper и пикапы Dodge Ram. В дальнейшем конструкцию приняли на вооружение другие производители.
Впускной коллектор с изменяемой геометрией
Еще одной инновацией, завоевывающей в последнее время все больше сторонников, стала конструкция впускного коллектора с переменной геометрией. В данный момент существуют несколько общих принципов реализации этой конструкции. Одна из них подразумевает наличие двух путей, по которым может двигаться поток воздуха или топливо-воздушной смеси по индивидуальному каналу, ведущему к цилиндру – короткого и длинного. При определенном режиме установленный в канале клапан закрывает короткий путь.
При демонтаже впускного коллектора замена прокладки обязательна, так как от герметичности соединения может зависеть работа всей системы впуска
Вторая конструкция подразумевает установку клапана в приемную камеру. При достижении определенных условий заслонка уменьшает внутренний объем камеры. Для двигателей с большим количеством цилиндров (больше 4-х) существуют и еще более сложные системы. Кстати, именно благодаря этому принципу удается отключать часть цилиндров в двигателях V8 – часть камеры, к которой присоединены каналы половины цилиндров, перекрывается заслонкой, и поток топливо-воздушной смеси в них не попадает.
Вопросы эксплуатации впускного коллектора
Для корректной работы впускного коллектора крайне важно качество и состояние прокладок. Поэтому, если коллектор по какой-то причине пришлось снять, необходимо убедиться в том, что все уплотнения в хорошем состоянии, и если прокладки порваны, их обязательно нужно сменить, чтобы восстановить герметичность.
Необходимо знать, что алюминиевые и пластиковые коллекторы, которые установлены на подавляющем большинстве современных двигателей, больше повержены деформации, чем чугунные, которые встречаются только на старых двигателях (например, на “классических” двигателях ВАЗ). Во избежание появления трещин и перекосов для затягивания гаек на коллекторе нужно использовать динамометрический ключ и соблюдать порядок затяжки. Как правило, рекомендуется начинать с центра и постепенно двигаться к периферии, попеременно затягивая гайку то на одной, то на другой стороне.
Коллектор
В машинах постоянного тока для выпрямления э.д.с. применяется коллектор, представляющий собой механический преобразователь, выпрямляющий переменный ток якорной обмотки в постоянный ток, проходящий через щетки во внешнюю цепь. Коллектор состоит из соединенных с витками обмотки якоря изолированных между собой пластин, которые, вращаясь вместе с обмоткой якоря, поочередно соприкасаются с неподвижными щетками, соединенными с внешней цепью. Одна из щеток всегда является положительной, другая – отрицательной.
Рис. 6 – Выпрямление э.д.с. при помощи коллектора: 1- медные пластины; 2 – виток обмотки якоря; 3 – щетки; 4 – внешняя электрическая цепь
Простейший коллектор имеет две изолированные между собой медные пластины, выполненные в форме полуколец (рис. 6), к которым присоединены концы витка якорной обмотки. Пластины коллектора соприкасаются с неподвижными контактными щетками, связанными с внешней электрической цепью. При работе машины пластины коллектора вращаются вместе с витками якорной обмотки. Щетки устанавливаются таким образом, чтобы в то же время, когда э.д.с. витка меняет знак на обратный, коллекторная пластина перемещалась от щетки одной полярности к щетке другой полярности. В результате этого на щетках возникает пульсирующее напряжение, постоянное по направлению (см. сплошную кривую 1 на рис. 3, в).
Рис. 7 – Устройство коллектора: 1 – корпус; 2 – стяжной болт, 3 – нажимное кольцо; 4 – изоляционная прокладка; 5 – «петушок» – часть коллекторной пластины, к которой припаивается конец секции обмотки; 6 – «ласточкин хвост» – часть коллекторной пластины, служащая для ее крепления; 7 – коллекторная пластина
Якорная обмотка состоит из большого числа секций, представляющих собой один или несколько последовательно соединенных витков. Конец каждой секции присоединяется к одной из изолированных коллекторных пластин, образующих коллектор (рис. 7). По мере увеличения числа секций уменьшается пульсация напряжения на щетках (рис. 8). При двадцати коллекторных пластинах разница между максимальной и минимальной величиной напряжения, отнесенная к среднему значению, не превышает 0,65%.
Коллектор является сложным и дорогим устройством, требующим тщательного ухода. Его повреждения нередко служат причиной серьезных аварий. Предпринимались многочисленные попытки создать бесколлекторную машину постоянного тока, однако построить ее принципиально невозможно, так как в многовитковой якорной обмотке, активные стороны которой последовательно проходят под полюсами разной полярности, в любом случае наводится переменная э.д.с., для выпрямления которой необходимо особое устройство.
Рис. 8 – Пульсация напряжения на щетках генератора постоянного тока: а – при двух витках на полюс; б – при большом количестве витков
Поэтому машинами постоянного тока называются электрические машины, у которых преобразование энергии происходит вследствие вращения якорной обмотки относительно неподвижного потока полюсов, а выпрямление тока в постоянный осуществляется коллектором (или иным выпрямителем, вращающимся вместе с якорем).
Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станов, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей. Генераторы постоянного тока применяются главным образом для питания радиостанций, двигателей постоянного тока, зарядки аккумуляторных батарей, сварки и электрохимических низковольтных установок.